
F. Oquendo (Ed.): EWSPT 2003, LNCS 2786, pp. 94–111, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Integrated Measurement for the Evaluation and
Improvement of Software Processes

Félix García, Francisco Ruiz, José Antonio Cruz, and Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, 4
13071 Ciudad Real, Spain

{Felix.Garcia, Francisco.RuizG, Mario.Piattini}@uclm.es,
jacruz@proyectos.inf-cr.uclm.es

http://alarcos.inf-cr.uclm.es/english/

Abstract. Software processes have an important influence on the quality of the
final software product, and it has motivated companies to be more and more
concerned about software process improvement when they are promoting the
improvement of the final products. The management of software processes is a
complex activity due to the great number of different aspects to be considered
and, for this reason it is useful to establish a conceptual architecture which in-
cludes all the aspects necessary for the management of this complexity. In this
paper we present a conceptual framework in which the software process model-
ing and measurement are treated in an integrated way for their improvement. As
a support to the improvement a collection of software process model metrics is
proposed. For the management of the measurement process, GenMETRIC, an
extensible tool for the definition, calculation and presentation of software met-
rics, has been developed.

1 Introduction

The research about the software process has acquired a great importance in the last
few years due to the growing interest of software companies in the improvement of
their quality. Software processes have an important influence on the quality of the
final software product, and for this reason companies are becoming more and more
concerned about software process improvement, when they are promoting the im-
provement of the final products. Software applications are very complex products, and
this fact is directly related to their development and maintenance. The software proc-
ess is therefore a process, yet with special characteristics stemming from the particular
complexity of the software products obtained. To support the software process evalua-
tion and improvement, a great variety of initiatives have arisen establishing reference
frameworks. Among these initiatives, of special note are CMM [22], CMMI [23], the
ISO 15504 [10] standard, and, given its importance, the improvement has been incor-
porated into the new family of ISO 9000:2000 [12], [13] standards that promote the
adoption of a focus based on processes when developing, implementing or improving
a quality management system. Among the above-mentioned improvement initiatives,
CMMI (Capability Maturity Model Integration) stands out as being especially impor-

Integrated Measurement for the Evaluation and Improvement of Software Processes 95

tant. Within the context of CMMI, the company should continuously understand,
control and improve its processes, in order to reach the aims of each level of matur-
ity. As a result of effective and efficient processes, a company will, in return, receive
high quality products that satisfy both the needs of the client and of the company it-
self.

The successful management of the software process is necessary in order to satisfy
the final quality, cost, and time of the marketing of the software products. In order to
carry out said management, four key responsibilities need to be assumed [6]: Defini-
tion, Measurement, Control and Improvement of the process. Taking these respon-
sibilities into account, it is very important to consider the integrated management of
the following aspects to be able to promote process improvement:

• Process Modeling. Given the particular complexity of software processes,
deriving from the high diversity of elements that have to be considered when
managing them, it is necessary to effectively carry out a definition process of
the software process. From the process modeling point of view, it is neces-
sary to know which elements are involved before processing them. A soft-
ware process can be defined as the coherent set of policies, structures, or-
ganisation, technology, procedures and artifacts needed to conceive, develop,
package and maintain a software product [4]. Software process modeling has
become a very acceptable solution for treating the inherent complexity of
software processes, and a great variety of modeling languages and formalities
can be found in the literature. They are known as “Process Modeling Lan-
guages” (PML) and their objective is to precisely represent, without ambigu-
ity, the different elements related to a software process. In general, the fol-
lowing elements (general concepts, although, with different notations and
terms) can be identified in a software process in the different PMLs [4]: Ac-
tivity, Product, Resource and Organisations and Roles. Faced with the
diversity of existing process modeling proposals, a process metamodel be-
comes necessary. This metamodel can serve as a common reference, and
should include all of the aspects needed to define, as semantically as possi-
ble, the way in which the software is developed and maintained. With this
goal, the Object Management Group recently proposed the SPEM (Software
Process Engineering Metamodel Specification) [17] metamodel, that consti-
tutes a language for the creation of concrete process models in a company.

• Process Evaluation. In order to promote software process improvement, it is
very important to previously establish a framework for analysis (with the aim
of determining its strong and weak points). An effective framework for the
measurement of the software processes and products of a company, must be
provided, in order to carry this out. The other key aspect to be considered, is
the importance of defining and validating software process metrics, in order
to evaluate their quality. The previous step of the software processes im-
provement, is their evaluation, and this goal requires the definition of metrics
related to the different elements involved in software processes. Due to the
great diversity of elements involved in software processes, the establishment
of a common terminology for the definition, calculation and exploitation of

96 F. García et al.

metrics is fundamental for the integrated and effective management of the
measurement process.

The integration of the modeling and evaluation of software processes is a funda-
mental factor for a company to reach a high degree of maturity in its processes, as
identified by CMMI. Therefore, it is vital that processes be well understood and im-
proved. This means that it is necessary for them to be well defined, and that an effec-
tive measurement process should be carried out previously.

In this article we propose a conceptual framework which integrates the modeling
and measurement of the software processes to promote their improvement. This
framework incorporates the elements necessary to facilitate the definition and evalua-
tion of software processes. Besides, in order to support the evaluation of the process
from a conceptual point of view, a set of metrics have been defined.

Firstly, we present a general view of the conceptual framework. In Section 3, a ge-
neric metamodel for the integration of the measurement, is described. It has been
defined and incorporated into the conceptual architecture, aiming to establish the
needed reference for integrated measurement in an organisation. In the following
section, a set of representative metrics for the evaluation of software process models,
are presented. In Section 5 the GenMetric tool, an extensible tool developed to sup-
port integrated measurement in a company, is described. Finally, some conclusions
and further works are outlined.

2 Conceptual Framework for the Modeling and Measurement of
Software Processes

In order for a company to carry out integrated management of its software processes,
it is very important for it to establish a rigorous base for:

- the definition of its process models, using singular terminology and precise
and well-defined semantics.

- the integrated management of measurement in the company, using a meas-
urement metamodel that is the framework of reference for the creation of
concrete measurement models (database measurement, design, analysis result
or work product measurements, process model measurements, etc…).

A conceptual architecture with four levels of abstraction has been defined in order

to integrate these two very important aspects in a software process. This architecture is
based on the MOF (Meta Object Facility) standard for metamodeling, based on object
technology [16] proposed by the Object Management Group (OMG).

The aim of MOF is to specify and manage metadata on different levels of abstrac-
tion. MOF describes an abstract modeling language (based on the nucleus of UML).
In Table 1 the MOF standard conceptual architecture and its application to the
framework of work proposed for the improvement of the software process is shown:

Integrated Measurement for the Evaluation and Improvement of Software Processes 97

Table 1. MOF conceptual levels and their application for integrated improvement.

Level MOF Environment Application
M3 MOF-model

(meta-meta-model)
MOF-model

M2 Meta-model Software Process Engineering Metamodel (SPEM)
Generic Measurement Metamodel (ISO 15939)

M1 Model Concrete Process Models
Concrete Measurement Models

M0 Data Instances of Process Models (concrete projects in
the real world)

Instances of Measurement Models (results of the
application of the measurement model)

The lower level of the conceptual architecture, M0, includes the results for:

- The application of a process model, for example, a model for evaluation and
improvement [7], or a maintenance model [20] to a concrete software project.
At this level of architecture, the results of the execution of a concrete process
model will be registered.

- The application of a measurement process. At this level the values obtained
following the application of a concrete measurement model will be regis-
tered. For example, the values from the measurement of a relational database
or the values from the measurement of UML class diagrams.

The data managed at level M0 are instances of the data represented in the next level

up, M1. At this level, according to the conceptual architecture proposed, concrete
models for the definition of the software process and concrete models for their meas-
urement will be included. From the definition point of view, at this level the company
will include its process models, for example, the model for development, maintenance,
evaluation and improvement process, etc. From the measurement point of view, this
level will include the concrete measurement models used by the company. For exam-
ple, this could include concrete measurement models for the measurement of relational
[3], object-relational [19], active [5] databases, etc. and concrete models for measuring
software artifacts such as UML class diagrams [8], state transition diagrams [9], etc.
Moreover, at this level the company could also dispose of measurement models for the
defined process models themselves. A collection of metrics of software process mod-
els is described in Section 4.

All of the models defined in level M1 are instances of the concepts represented in
M2. Therefore, in the M2 level of abstraction of the conceptual architecture, generic
metamodels for the creation of concrete models should be included. In our framework
the generic metamodels required are:

- Software Process Metamodel, with which concrete process models can be
defined. SPEM [17] has been chosen as a software process metamodel due to

98 F. García et al.

its wide acceptation in the industry. This metamodel contains the constructors
needed to define any concrete software process model. The conceptual model
of SPEM is based on the idea that a software development process consists of
the collaboration between abstract and active entities, referred to as process
roles, that carry out operations, called activities, on tangible entities, called
work products. SPEM is basically structured in 5 packages that are: Basic
Elements, which includes the basic elements needed to describe processes;
Dependences, that contains the dependences necessary in order to define the
relationships between the different process modeling elements, like for ex-
ample, the ”precedes” dependence, which is a relationship between activities,
or between work definitions, and indicates “beginning-beginning”, “end-
beginning” or “end-end” dependences; Process Structure, which includes
the structural elements through which a process description is constructed.;
Process Components, which contains the elements needed to divide one or
more process descriptions into self-contained parts, upon which configuration
management processes or version controls can be applied; and Process Life
Cycle, that includes the process definition elements that help to define how
the processes will be executed. In short, SPEM makes the software process
integrated management, within the proposed conceptual architecture easier,
since the concepts of the different models are grouped under a common ter-
minology.

- Measurement Metamodel, with which it is possible to define concrete
measurement models. This metamodel is described in detail in Section 3.

In the final conceptual level of the architecture, M3, all of the concepts of the proc-

ess metamodel and measurement metamodel are represented. This is done using the
MOF abstract language, which is basically composed of two structures: MOF class
and MOF association (these are the main elements for us, although others do exist
such as: package, type of data, etc…). In this way, all of the concepts in level M2 are
instances of MOF class or MOF association, for example, the SPEM concepts like,
“Activity”, “Work Product” and concepts of the measurement metamodel like “Met-
ric”, “Indicator”, “Measurement Unit” are instances of MOF class, and the relation-
ships “Activity precedes Activity”, “Work Product precedes Work Product” or “Met-
ric has a Measurement Unit”, are instances of MOF association.

With this architecture, it is possible to perform integrated management of the soft-
ware process improvement, since the process definition and its measurement are sys-
tematically integrated. The MANTIS-Metamod [7] tool, which allows for the defini-
tion of metamodels (based on the MOF language constructors) and of models (based
on the constructors of their metamodels), has been developed as a means of support to
this conceptual architecture. A repository manager [21] that uses the XMI standard
(XML Meta-data Interchange) [18] to promote portability of the defined models and
metamodels is used for management of the storage and exchange of the metadata from
the conceptual architecture.

Integrated Measurement for the Evaluation and Improvement of Software Processes 99

3 Measurement Metamodel for the Integrated Process
Evaluation and Improvement

A fundamental element to take into consideration when establishing a framework for
process improvement, is the possibility of defining objective indicators of the proc-
esses that allow a software company to efficiently evaluate and improve its processes
at any given moment. Evaluation standards like CMM, CMMI, ISO 15504, ISO
9000:2000 have assigned an important role to measurements in order to determinate
the status of the software processes. A measurement process framework must be estab-
lished in order to do so.

A good base for developing a measurement process is the one provided by CMMI
[23]. In CMMI a new key process area called “Measurement and Analysis” is in-
cluded. The aim of this area is to develop and establish a measurement capacity that
can be used to support the company’s information needs, and this implies broadening
the concepts included in the CMM model. According to CMMI, the first step in the
measurement process is to identify the measurement objectives, so that, in a second
step, a measurement and analysis process can be implemented. This requires the
measurement to be integrated in the different work processes of a company. It is very
important for a company wishing to implant an effective measurement process to be
able to precisely define concrete measurement models that, being supported by an
integrated measurement tool, allow the appropriate and necessary automation for
process evaluation.

Most of the problems in collecting data on a measurement process are mainly due
to a poor definition of the software measures being applied. Therefore, it is important
not only to gather the values pertaining to the measurement process, but also to appro-
priately represent the metadata associated to this data. In [14] a method for the speci-
fication of measurement models is defined with the aim of capturing the definitions
and relationships between software measurements. The proposed framework is made
up of three levels of abstraction for measurement, starting from a generic measurement
model and moving up to automation of the gathering of metric values on a project
level. This idea of abstraction is fundamental in order to be able to effectively inte-
grate the measurement process into the organisation.

Therefore, it is very convenient to introduce a generic metamodel for measurement,
making it possible to derive concrete measurement models that make up the base for
assessment and improvement processes in an organisation. In Figure 1 our proposal
for a measurement metamodel based on the ISO 15939 [11] standard is represented in
UML.

100 F. García et al.

ty pe={s ubjectiv e,
objectiv e}

ty pe={nominal,
ordinal,
interv al, ratio}

Defined MeasureIndicator
Accuracy Level

Decision CriteriaAlgorithm

Analysis Model

1..*

1

1..*

1

is applied to1

1

1

1
obtains

1111

Information Need

Derived Measure

Entity

Metric
name
description

Measurable Concept
*1 *1 satisfies

Measurement Function

11

obtains

Measurement Unit
name
description

has

Measurable Attribute
1..*1..*

associated with

1..*

1

1..*

1

is associated wi th

Base Measure

2..n

1

2..n

1
is applied to

Scale
type

1

1..*

1

1..*

has

Measurement Method
type

1.. *

1

1.. *

1applied to

1..*1..*

obtains

associated with

Fig. 1. Generic Metamodel for the Measurement Process

As can be observed in Figure 1, under the measurement point of view, the elements

on which properties can be measured are “Entities”. An entity is an object (for exam-
ple, a process, product, project or resource), that can be characterised through the
measurement of its “Measurable Attributes” which describe properties or character-
istics of entities, which can be distinguished quantitatively or qualitatively by human
or automatic means. The aim of attributes is to satisfy specific information needs such
as, “the need to compare software development productivity with respect to a deter-
mined value”. This abstract relation between attributes and information needs is repre-
sented by the element called “Measurable Concept”, that, in this case, would be
“productivity ratio of software development”. As measurable attributes, attributes of
the developed product size or of development effort could be used.

All measurable attributes are associated to a metric, which is an abstraction of the
different types of measurements used to quantify, and to make decisions concerning
the entities. All metrics are associated to a unit of measure (for example, code lines),
which at the same time belong to a determined scale. In accordance with the stan-
dard, the 4 scales distinguished are: nominal, ordinal, interval and ratio, although
other classifications can be established like in [14]. The three types of metrics are:

Integrated Measurement for the Evaluation and Improvement of Software Processes 101

- Base Measurement, defined in the function of an attribute, and the method
needed to quantify it (a measurement is a variable to which a value is as-
signed).

- Derived Measurement, a defined measurement in function of two or more
values of base measurements.

- Indicator, a measurement that provides an estimate or assessment of specific
attributes, derived from a model with respect to information needs. The indi-
cators are the base for analysis and decision-making. These measurements are
the ones that are presented to the users in charge of the measurement process.

The procedures for calculating each of the metric types are:

- The values of the base measurements are reached with “Measurement Meth-
ods” that consist of a logical sequence of operations, generically described,
used to quantify an attribute with respect to a specific scale. These operations
can imply activities such as, counting occurrences or observing the passing of
time. The same measurement method can be applied to multiple attributes.

- The derived measurements are obtained by applying a “Measurement Func-
tion”, which is an algorithm or calculation carried out to combine two or
more base measurements. The scale and unit of the derived measurement de-
pends on the scales and units of the base measurements.

- The indicators are obtained with an “Analysis Model”. An analysis model
produces estimates and assessments relevant to the defined information
needs. It consists of an algorithm or calculation that combines one or more
base measurements and/or derivates with determined decision-making crite-
ria. All decision-making criteria is composed of a series of limit values, or
used objects for determining the need to research, or to describe the confi-
dence level with regard to a determined result. These criteria help to interpret
the measurement results.

Using this reference metamodel it is possible to measure any element of a process

or data model. Taking into account that our main objective is the software process
improvement, and therefore, the evaluation, itis necessary to establish the relationship
between the main elements of the software process metamodel and the main elements
of the software measurement metamodel. This relationship is represented in Figure 2.

102 F. García et al.

EntityMeasurable Attribute
1..*1..*

Measurable Concept

1..*

1

1..*

1

associated with

Process ModelInformation Need

*

1

*

1

satisfies

Work Product

Project
1..*1..*

enacted in

0..*0..*

has

1..*1..*

produces

Fig. 2. Relation between the software process metamodel and the measurement metamodel

As we can observe in Figure 2, any software process model is enacted in concrete
software projects. As a result of carrying out a software project, certain work products
are produced and all software projects are required to satisfy some information needs.
The main candidate elements to be measured in order to evaluate the software process
are:

• The Software Process Model. It could be very convenient to research if the
model of software processes has an influence on its final quality. For this rea-
son, with the framework proposed, it is possible to define metrics related
with the constructors of the software process metamodel. For example, if we
apply the measurement metamodel to the elements of the SPEM model, we
could measure important elements like the class Activity, and the classes
Work Product and Process Role. These elements of the model have a set of
measurable attributes, such as for an activity: “the number of activities with
which there is a precede type dependence”. This attribute would be calcu-
lated with a metric to satisfy an information necessity like, “Evaluate the
software process coupling” and, in this case, the unit of measure would be of
“Ratio” type. This issue will be treated in the following section.

• The Work Product. This is a fundamental factor in the quality of the soft-
ware process. Work Products are the result of the process (final or intermedi-
ate), and their measurement is fundamental in order to evaluate the software
processes. With the framework proposed, it’s possible to measure the quality
attributes related with the artifacts or work products, by defining the meta-
models related with the different work products. For example, if we have to
evaluate the quality of a UML class diagram we have to incorporate into the
framework, the UML metamodel and metrics necessary.

Integrated Measurement for the Evaluation and Improvement of Software Processes 103

In this way, with the framework proposed, the work of an assessment and im-
provement process is eased, since the fulfillment of the software processes carried out
in a determined organisation are quantitatively registered.

4 Proposal of Software Metrics for the Evaluation of Software
Processes Models

The study of the possible influence of the software process model complexity in its
execution could be very useful. For this reason the first step is the definition of a col-
lection of useful metrics in order to characterise the software process models. In this
section a collection of metrics of software process models are going to be defined in
order to evaluate their complexity. These metrics have been defined according to the
SPEM terminology, but they can be directly applied to other process modeling lan-
guages. The metrics proposed could be classified like model level metrics, if they
evaluate the characteristics of a software process model, or like fundamental element
(activity, process role and work product) metrics, if they describe the characteristics of
a model element. For this reason they will be described separately.

4.1 Model Level Metrics

The process model level metrics (PM) proposed are:

- NA(PM). Number of Activities of the process model.

- NSTP(PM). Number of steps (tasks) of the process model.

- NDRA(PM). Number of dependence relationships between activities of the
process model.

- RSTPA(PM). Ratio of steps and activities. Average of the steps and the ac-
tivities of the process model.

)(

)(
)(

PMNA

PMNSTP
PMRSTPA =

- AC (PM): Activity Coupling in the process model. This metric is defined as:

)(

)(
)(

PMNDRA

PMNA
PMAC =

- NWP(PM): Number of Work Products of the process model.

- RWPA(PM): Ratio of work products and activities. Average of the work
products consumed (input), modified (input/output) or produced (output) by
the activities.

104 F. García et al.

)(

)(
)(

PMNA

PMNWP
PMRWPA =

- NPR(PM): Number of Process Roles of the process model.

- RPRA (PM): Ratio of process roles and activities. Average of the process
roles and the activities of the process model.

)(

)(
)(

PMNA

PMNPR
PMRPRA =

4.2 Fundamental Element Level Metrics

• Activity Metrics:
- NSTP(A). Number of Steps (tasks) of an Activity.
- NWPIn(A). Number of Input Work Products of the Activity.
- NWPOut(A). Number of Output Work Products of the Activ-

ity.
- NWPInOut(A). Number of Input-Output Work Products of the

Activity.
- NWP(A). Total Number of Work Products related to an Ac-

tivity.
)()()()(ANWPInOutANWPOutANWPInANWP −+=

- RWPIn(A). Average of the Input Work Products in activity A.

)(

)(
)(

ANWP

ANWPIn
ARWPIn =

- RWPOut(A). Average of the Output Work Products in activity

A.

)(

)(
)(

ANWP

ANWPOut
ARWPIn =

- RWPInOut(A). Average of the Output Work Products respect

to the total number of Work Products in activity A.

)(

)(
)(

ANWP

ANWPInOut
ARWPInOut =

- NR(A). Number of responsible Roles of an Activity.
- NPD(A). Number of Activities which are predecessors (activ-

ity dependences of input) of Activity A.

Integrated Measurement for the Evaluation and Improvement of Software Processes 105

- NSD(A). Number of Activities which are successors (activity
dependences of output) of Activity A.

- ND(A). Total number of dependences of activity A.
)()()(ANSDANPDAND +=

- PR(A). Average of the predecessors activities with respect to

the total number of dependences in activity A.

)(

)(
)(

AND

ANPD
APR =

- PS(A). Average of the successors activities with respect to the

total of dependences in activity A.

)(

)(
)(

AND

ANSD
APS =

• Process Role Metrics:

- NARP(R). Number of Activities who’s responsibility is role R.
- RRPR(R). Ratio of responsibility of the process role. Ratio be-

tween the activities in which role R is responsible and the total
number of activities in the model.

)(

)(
)(

PMNA

RNARP
ARRPR =

• Work Product Metrics:

- NAWPIn(WP). Number of Activities in which the work prod-
uct is of input.

- NAWPOut(WP). Number of Activities in which the work
product is of output.

- NAWPInOut(WP). Number of Activities in which the work
product is of input/output.

- NAWP(WP). Number of Activities related with the Work

Product.

NAWPInOutWPNAWPOutWPNAWPInWPNAWP −+=)()()(

- RDWPA(WP). Ratio of dependence of the work product. Ratio

between the activities related with the work product and the to-
tal number of activities in the model.

)(

)(
)(

PMNA

WPNAWP
WPRDWPA =

106 F. García et al.

4.3 Example

Figure 3 shows an example of a simplified software process model which belongs to
the Rational Unified Process [2]. For the graphical representation of the model the
SPEM notation [17] has been used. The values of the metrics proposed are shown in
the tables 2, 3 and 4.

Fig. 3. Example of a Software Process Model represented with SPEM.

Table 2. Model Level Metrics

Metric Value Metric Value
NA(PM) 5 NWP(PM) 8

NSTP(PM) 11 RWPA(PM) 8/5=1,6
NDRA(PM) 4 NPR(PM) 4
RSTPA(PM) 11/5=2,2 RPRA(PM) 4/5= 0,8

AC(PM) 5/4= 1,25

Find Actors

and Use Cases

 Prioritize
 Use Cases

 Structure the
 Use Case

Model

Description
of the

Architecture

Glossary

Use Case
Detailed

Architect

Additional
Requirements

System
Analyst

Domain Model

List of
Characteristics

 Detail a
Use Case

 Prototype
User

Interface

Use Case Model

User Interface
Designer

Use Case
Specifier

User Interface
Prototype

Steps:
- Find the Actors
- Find the Use Cases
- Describe briefly each Use Case
- Description of the Use Case Model

Steps:
- Identification of descriptions of shared
functionality
- Identification of descriptions of optional
or additional functionality
- Identification of other relationships
b t

Steps:
- Create the logical design of the user interface
- Creation of the design and a physical prototype of the user interface

Steps:
- Structuration of the use cases description
- Formalization of the use cases description

No Steps

Integrated Measurement for the Evaluation and Improvement of Software Processes 107

Table 3. Metrics of the Activity “Detail a Use Case”.

Metric Value Metric Value
NSTP(A) 2 RWPInOut(A) 0
NWPIn(A) 3 NR(A) 1
WPOut(A) 1 NPD(A) 1
NWPInOut(A) 0 NSD(A) 2

NWP(A) 4 ND(A) 3
RWPIn(A) 3/4= 0,75 PR(A) 1/3=0,33..

RWPOut(A) 1/4= 0,25 PS(A) 2/3=0,66..

Table 4. Metrics of Work Product and Process Role examples.

Process Role
“System Analyst”

Metrics

Value Work Product
“Use Case Model”

Metrics

Value

NARP(R) 2 NAWPIn(WP) 4
RRPR(R) 2/5=0,4 NAWPOut(WP) 2

 NAWPInOut(WP) 1
 NAWP(WP) 4+2-1=5
 RDWPA(WP) 5/5=1

This is only the first step in the overall metrics definition process [3]. The follow-

ing step is the formal validation of the metrics, and then, it is fundamental to run
empirical studies in order to prove the practical utility of the metrics defined. As a
result of this step (and of the complete method) we will be able to accept, discard or
redefine the metrics presented in this paper. An important number of metrics have
been proposed, and the validation process is fundamental for the selection of the ade-
quate metrics which fulfill our objective.

5 GenMETRIC. Extensible Tool for the Integrated Management
of the Measurement Process

Aiming to offer automatic support to the integrated measurement process commented
on in the previous sections, we have developed the GenMETRIC tool. GenMETRIC is
an extensible tool for the definition, calculation and visualisation of software metrics.
This tool for the integrated management of the measurement process supports the
definition and management of software metrics. Moreover, the tool supports the
measurement metamodel based on ISO 15939 that has been proposed for better sup-
port and management of the integrated measurement process.

For the management of the measurement process, the tool can import information
on the following elements, represented in XMI document form [18]:

108 F. García et al.

- Domain Metamodels on which metrics are defined. The elements of each
metamodel are stored to be able to carry out a measurement process on them.
For example, if a relational database is to be measured, it will be necessary to
previously define the elements of the relational metamodel, like: Table, Attrib-
ute, Interrelation, etc...

- Domain Models. The models are instances of the metamodels, and it is of in-
terest to carry out a measurement process on them. For example, the schema
(model) of the database of a bank would be an instance of the relational meta-
model on which we could carry out a measurement process.

- Metric Models. Metric models allow the defined metrics to be consistently
stored. In order to do so, the metric models used by the tool are instances of
the measurement metamodel proposed in the previous section.

The information imported by the tool on the different domain metamodels, and on

the metrics is persistently stored in a XMI based Repository. The calculation of the
metrics defined is performed by using the information in the Repository. The different
models and metamodels needed are defined and represented in XMI with the
MANTIS-Metamod [7] tool. The relationship between GenMetric and MANTIS-
Metamnod is represented in the following figure:

Domain
Metamodels

Generic
Measurement
Metamodel

Domain
Models

Domain Metadata

MANTIS-Metamod Tool

Metric Models

defined with

X M I
Repository

Metrics Metadata

Gen-Metric Tool

export

imported by

Relational
Database Metrics

UML Metrics

E/R Metrics

Web Metrics

.................

Generic Measurement
Metamodel

based models

Domain Metadata
Metrics Metadata

Fig. 4. Relationship between MANTIS-Metamod and Gen-Metric

As we can observe in Figure 4, the repository is the key element for the integrated
management of the measurement process. The metadata are defined and exported in
XMI with MANTIS-Metamod tool. The information of the repository is imported by
GenMetric for the management of the metrics needed, and with GenMetric, the user
can build metrics models (based on the generic metamodel). These models are ex-
ported to the repository.

GenMetric provides the user with a powerful interface for the definition, calcula-
tion and visualisation of metrics. From the perspective of the use of the tool, two roles

Integrated Measurement for the Evaluation and Improvement of Software Processes 109

have been defined. They are: Administrator, that completely controls the functionality
of the tool, allowing it to define, calculate and visualise any metric, and User, that has
access to the calculation and visualisation of the metrics that have already been de-
fined. In Figure 5 the interface for the definition of metrics is represented:

Fig. 5. Definition of a new metric with GenMetric.

An integrated and automatic environment for measurement is provided with the
proposed tool. Being a generic tool, the definition of any new metric on the existing
domain metamodels is possible, without having to code new modules. Furthermore,
the tool is extensible, which eases the incorporation of new domain metamodels, for
example a metamodel for defining web elements (formed by web pages, links between
pages, etc.) and in this way it is possible for concrete domain models, web sites for
example, to be measured. Moreover, as it works with XMI documents, it eases com-
munication and the possibility of openly importing new domain metamodels, or do-
main models and metrics stored in other repositories based on MOF.

6 Conclusions and Future Work

In this work, a conceptual framework to promote the improvement based on integrated
modeling and measurement of software processes has been presented. The SPEM
metamodel is used for the modeling of processes under a common terminology, and a
metamodel based on the ISO 15939 standard, easing the management of an integrated

110 F. García et al.

measurement process to promote improvement in a company’s processes, has been
defined as an integrated framework for measurement.

In order to evaluate the influence of the complexity in the software process models
in their enactment, some metrics have been proposed. These metrics are focused on
the main elements included in a model of software processes, and may provide the
quantitative base necessary to evaluate the changes in the software processes in com-
panies with high maturity levels, which are applying continuous improvement actions
[1].

As a means of support for the integrated measurement, the GenMetric tool has been
developed to define, calculate and visualise software metrics. With the tool it is possi-
ble to incorporate new types of metrics and new types of elements to measure, since
its architecture has a generic and extensible design.

With the proposed framework, any company dedicated to the development and/or
maintenance of software can effectively define and evaluate its processes as a step
prior to promoting their improvement. Furthermore, as the framework is based on the
MOF standard, the simple extension and modification of its elements is possible, with
the incorporation and modification of the necessary metamodels, since all of them are
represented following the common terminology provided by the MOF model. Along
the lines for improvement for future studies, we can point out the following:

- Description of concrete measurement models, using the generic metamodel,
to effectively support the evaluation and improvement of software processes.

- Formal and empirical validation of the metrics proposed to study the rela-
tionship between the influences of the software process models complexity in
their enactment.

Acknowledgements. This work has been partially funded by the TAMANSI project
financed by “Consejería de Ciencia y Tecnología, Junta de Comunidades de Castilla-
La Mancha” of Spain (project reference PBC-02-001) and by the DOLMEN project
(Languages, Methods and Environments), which is partially supported by FEDER
with number TIC2000-1676-C06-06.

References

1. Pfleeger, S.L.: Integrating Process and Measurement. In Software Measurement. A. Mel-
ton (ed). London. International Thomson Computer Press (1996) 53–74

2. Jacobson, I, G. Booch and J. Rumbaugh,. The Unified Software Development Process.
Addison Wesley (1999)

3. Calero, C., Piattini, M. and Genero, M.: Empirical Validation of referential metrics. In-
formation Software and Technology”. Special Issue on Controlled Experiments in Soft-
ware Technology. Vol.43, Nº 15 (2001)

4. Derniame, J.C., Kaba, B.A. and Wastell, D.: Software Process: Principles, methodology
and technology. Lecture Notes in Computer Science 1500 . Springer (1999)

5. Díaz, O., Piattini, M. and Calero, C.: Measuring triggering-interaction complexity on
active databases. Information Systems Journal. Elsevier Science. Vol. 26, Nº 1 (2001)

Integrated Measurement for the Evaluation and Improvement of Software Processes 111

6. Florac, W. A. and Carleton, A.D.: Measuring the Software Process. Statistical Process
Control for Software Process Improvement. SEI Series in Software Engineering. Addison
Wesley (1999).

7. García, F., Ruiz, F., Piattini, M. and Polo, M.: Conceptual Architecture for the Assessment
and Improvement of Software Maintenance. 4th International Conference on Enterprise
Information Systems (ICEIS’02). Ciudad Real, Spain, April (2002), 610–617

8. Genero, M., Olivas, J., Piattini, M. and Romero, F.: Using metrics to predict OO informa-
tion systems maintainability. 13th International Conference Advanced Information Sys-
tems Engineering (CAiSE'01), (2001), 388–401

9. Genero, M., Miranda, D. and Piattini, M.: Defining and Validating Metrics for UML
Statechart Diagrams. 6th International ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE), (2002), 120–136

10. ISO/IEC: ISO IEC 15504 TR2:1998, part 2: A reference model for processes and process
capability, (1998)

11. ISO IEC 15939, Information Technology – Software Measurement Process, Committee
Draft, December (2000)

12. International Organization for Standardization (ISO). Quality management systems -
Fundamentals and vocabulary. ISO 9000:2000, (2000). See
http://www.iso.ch/iso/en/iso9000-14000/iso9000/selection_use/iso9000family.html

13. International Organization for Standardization (ISO). 2000. Quality management systems -
Requirements ISO 9001:2000, (2000)

14. Kitchenham, B. A., Hughes, R.T. and Linkman, S.G.: Modeling Software Measurement
Data. IEEE Transactions on Software Engineering. 27(9), (2001), 788–804

15. OMG Unified Modeling Language Specification; version 1.4, Object Management Group.
September (2001). Available in
http://www.omg.org/technology/documents/formal/uml.htm

16. Meta Object Facility (MOF) Specification; version 1.4. Object Management Group. April
(2002). In http://www.omg.org/technology/ documents/formal/mof.htm

17. Software Process Engineering Metamodel Specification; adopted specification, version
1.0. Object Management Group. November (2002). Available in http://cgi.omg.org/cgi-
bin/doc?ptc/02-05-03.

18. OMG XML Metadata Interchange (XMI) Specification; version 1.2. Object Management
Group. January (2002). In http://www.omg.org/technology/documents/formal/xmi.htm

19. Piattini, M., Calero, C., Sahraoui, H. and Lonis, H.: Object-Relational Database Metrics.
L' object. ISSN 1262–1137. HERMES Science Publications, Paris. Vol.7, Nº 4, (2001)

20. Ruiz, F., Piattini, M. and Polo, M. An Conceptual Architecture Proposal for Software
Maintenance. International Symposium on Systems Integration (ISSI, Intersymp’2001).
Baden-Baden, Germany (2001), VIII:1–8

21. Ruiz, F., Piattini, M., García, F. and Polo, M. An XMI-based Repository for Software
Process Metamodeling. Proceedings of 4th International Conference on Product Focused
Software Process Improvement (PROFES’2002). Lecture Notes in Computer Science
(LNCS 2559), Markku Oivo, Seija Komi-Sirviö (Eds.). Springer. Rovaniemi (Finland).
December (2002), 546–558

22. Software Engineering Institute (SEI). The Capability Maturity Model: Guidelines for
Improving the Software Process, (1995). In http://www.sei.cmu.edu/cmm/cmm.html

23. Software Engineering Institute (SEI). Capability Maturity Model Integration (CMMISM),
version 1.1. March (2002). In http://www.sei.cmu/cmmi/cmmi.html

	1 Introduction
	2 Conceptual Framework for the Modeling and Measurement of Software Processes
	3 Measurement Metamodel for the Integrated Process Evaluation and Improvement
	4 Proposal of Software Metrics for the Evaluation of Software Processes Models
	4.1 Model Level Metrics
	4.2 Fundamental Element Level Metrics
	4.3 Example

	5 GenMETRIC. Extensible Tool for the Integrated Management of the Measurement Process
	6 Conclusions and Future Work

